Invalyutsiyalibirinchi tartibli differensial tenglama uchun bitsadze-samariskiy masalasi

Invalyutsiyalibirinchi tartibli differensial tenglama uchun bitsadze-samariskiy masalasi

Authors

  • Omonova A.N.

Abstract

Oxirgi yillarda bir nechta bir xil argumentli noma‘lumfunksiya qatnashgan differensial
tenglamalar bilan shug‗ullanishga bo‗lgan qiziqish ortib bormoqda. Bunga sabab ko‗plab issiqlik tarqalish
va diffuziya jarayonlarini matematik modelini tuzish funksiyani biror qiymati qatnashgan differensial
tenglama uchun qo‗yiladigan masalalarni keltiriladi.Odatda, bunday turdagi tenglamalar kechikuvchi
argumentli yoki invalutsiyalangan differensial tenglama deb yuritiladi.Shu sababdan biz ushbu ishda
invalutsiy

References

Cabada A., Tojo A.F. Equations with involutions. Atlantis Press: 2015.

Wiener J. Generalized solutions of functional dierential equations. World Scientic:1993.

SilbersteinL. Solution of the equation f(x)=f(1/x)//Lond.Edinb.Dubl.Phil. Mag. 1940. T. 30, 1. pp. 185-186.

Omonova A.N. Invalyutsiyali birinchi tartibli differensial tenglama uchun Koshi masalasi // Pedagog respublika ilmiy jurnali T. 7, 3. 251-254-betlar.

Published

2024-06-07

How to Cite

Omonova, A. (2024). Invalyutsiyalibirinchi tartibli differensial tenglama uchun bitsadze-samariskiy masalasi: Invalyutsiyalibirinchi tartibli differensial tenglama uchun bitsadze-samariskiy masalasi. MODERN PROBLEMS AND PROSPECTS OF APPLIED MATHEMATICS, 1(01). Retrieved from https://ojs.qarshidu.uz/index.php/mp/article/view/592

Issue

Section

Mathematical analysis, differential equations and equations of mathematical physics