Classifying social media comments using neural networks

Classifying social media comments using neural networks

Authors

  • Ro‘ziboyev Boburbek Otabek o‘g‘li

Keywords:

Classifying social media comments using neural networks

Abstract

Annotation. In the digital age, social media platforms have become pivotal arenas for
communication and expression. However, with the vast amount of user-generated content, moderating
and understanding the sentiment of social media comments has become increasingly challenging. This
thesis explores the application of neural networks in classifying social media comments, aiming to
enhance content moderation and sentiment analysis processes. Through the utilization of deep learning
techniques, particularly neural networks, this research investigates the effectiveness of various
architectures in accurately categorizing social media comments into

References

N. Gerasimenko, A. Chernyavskiy, M. Nikiforova, A. Ianina, K. Vorontsov, Incremental Topic Modeling for Scientific Trend Topics Extraction, Proceedings of the International Conference ―Dialogue, 2023

Н.А. Игнатьев, Д.Ю. Саидов, Анализ данных и принятие решений с помощью логических закономерностей в форме полуплоскостей, Известия Самарского научного центра Российской академии наук 19 (4-2), 294-299

Ш.Ф. Мадрахимов, Д.Ю. Саидов, Группировка признаков по критерию устойчивости объектов классов, Актуальные проблемы прикладной математики, информатики и механики, 93-95

Published

2024-06-07

How to Cite

Ro‘ziboyev, B. (2024). Classifying social media comments using neural networks: Classifying social media comments using neural networks. MODERN PROBLEMS AND PROSPECTS OF APPLIED MATHEMATICS, 1(01). Retrieved from https://ojs.qarshidu.uz/index.php/mp/article/view/536

Issue

Section

Computational linguistics