Mashinali o‘qitish asosida tarmoq trafigini sinflashtirish va filtrlash

Mashinali o‘qitish asosida tarmoq trafigini sinflashtirish va filtrlash

Authors

  • Tojiyeva Feruza Qobiljon qizi

Abstract

Annotatsiya. Internet xizmatlarining tez o‗sishi tarmoq trafigini sinflashtirish va filtrlashga bo‗lgan talabni oshirdi. Bugungi kunda tarmoq trafigini tahlil qilishning bir nechta usullari mavjud. Ushbu usullardan biri shifrlangan trafikni tahlil qilishda ishlatiladigan mashinali o‗qitish usuli hisoblanadi. Ushbu maqolada turli xil Internet trafiklarini tasniflash uchun mashinali o‗qitish usullari orqali tadqiqotchilar tomonidan olib borilgan ishlari tahlil qilindi.

References

W. Moore and D. Zuev, ―Internet traffic classification using Bayesian analysis techniques‖, In: Proc. of the 2005 ACM SIGMETRICS international Conf. on Measurement and modeling of computer systems, pp. 50–60, 2005.

Muhammad Shafiq, Xiangzhan Yu, Asif Ali Laghari, Lu Yao, N abin Kumar Karn, Foudil Abdessamia ―Network Traffic Classification Techniques and Comparative Analysis Using Machine Learning Algorithms. 2016.

L.Peng, B.Yang and Y.Chen, ―Effective packet number for early stage internet traffic identification‖, neurocomputing, vol.156, pp.252-267,2015.

R. Li, X. Xiao, S.Ni, H. Zeng, and S.Xia, ―Byte segment neural network for network traffic classification‖, In: Proc. Of IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), pp. 1-10, 2018.

A. Duque- Torres, F. Amezquita- Suarez, O.M. Caicedo Rendon, A. Ordonez and W.Y.Campo, ―An approach based on knowledge defined networking for idebtifying heavy-hitter flows in data center networks‖, Applied Sciences, 2019, 9(22), 4808. https://doi.org/10.3390/app9224808.

Published

2024-06-07

How to Cite

Tojiyeva, F. (2024). Mashinali o‘qitish asosida tarmoq trafigini sinflashtirish va filtrlash: Mashinali o‘qitish asosida tarmoq trafigini sinflashtirish va filtrlash. MODERN PROBLEMS AND PROSPECTS OF APPLIED MATHEMATICS, 1(01). Retrieved from https://ojs.qarshidu.uz/index.php/mp/article/view/464

Issue

Section

Artificial Intelligence and Information Security