"Tibbiy tasvirlarini segmentatsiya qilishda yangi konvolyutsion nneyron tarmog'i: arxitekturasi, usullari va qo'llanilishi tahlillari
"Tibbiy tasvirlarini segmentatsiya qilishda yangi konvolyutsion nneyron tarmog'i: arxitekturasi, usullari va qo'llanilishi tahlillari
Abstract
Annotatsiya. U-Net (U shaklidagi tarmoq) konvolyutsion neyron tarmog'i arxitekturasi tibbiy tasvirlarni tahlil qilish va samarali segmentatsiya qilishda inqilobiy ahamiyatga ega bo‘lgan uslub hisoblanadi. 2015 yilda Olaf Ronneberger va boshqalar tomonidan ishlab chiqilgan U-Net neyron tarmoqlaridan foydalanish tibbiy tasvirlar bilan ishlashda standart vositaga aylanib ulgurdi. Ushbu maqola uning ishlashi, samaradorligi va biotibbiy tasvirlarini segmentatsiya qilish muammolariga qo'llanilishi haqida ma'lumot beradi. Biz ushbu yangi tarmoq tarmoq qo'llaydigan usullarni, hal qiladigan muammolarini va yuqori segmentatsiya aniqligiga erishish yo‘llarini o'rganamiz. Shuningdek, uning yutuqlari va kelajakdagi istiqbollari haqida muhokama yuritamiz.
References
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv preprint arXiv:1505.04597.
Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., & Ronneberger, O. (2016). 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI).
Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., & Liang, J. (2018). UNet++: A Nested U-Net Architecture for Medical Image Segmentation. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support.
Oktay, O., Schlemper, J., Folgoc, L. L., et al. (2018). Attention U-Net: Learning Where to Look for the Pancreas. arXiv preprint arXiv:1804.03999.
Milletari, F., Navab, N., & Ahmadi, S. A. (2016). V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. 2016 Fourth International Conference on 3D Vision (3DV).
Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J., & Maier-Hein, K. H. (2021). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature Methods, 18, 203– 211.