O‘zgaruvchan kasr tartibli differensial tenglamani sonli yechish
O‘zgaruvchan kasr tartibli differensial tenglamani sonli yechish
Abstract
Annotatsiya. Bugungi kunda kasr tartibli differensial tenglamalardan foydalanib fizika,
kimyo,biologiya va texnika sohalarida matematik model qurish uchun samarali ravishda qo‗llanilib
kelinmoqda. Mazkur maqolada o‗zgaruvchan kasr tartibli oddiy differensial tenglamani yechishning sonli
usuli va hisoblash tajribalari natijalari bayon qilingan.
References
Псху А.В. Уравнения в частных производных дробного порядка. М.: Наука. 2005
Учайкин В.В. Метод дробных производных. Ульяновск: Артишок, 2008. — 512 с.
Gorenflo R., Mainardi F. Fractional calculus: integral and differential equations of fractional order,Fractal and Fractional Calculus in Continuum Mechanics (Udine, 1996). CISM Courses and Lectures.1997. Vol. 378. P. 223-276.
Podlubny I. Fractional Differential Equations. SanDiego: Academic Press. 1999.
Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника. 1987. 688 с.
Daraghmeh A., Qatanani N., Saadeh A. Numerical Solution of Fractional Differential Equations. Applied Mathematics, 2020, 11, 1100-1115.
Hilfer R. (Ed.) Applications of Fractional Calculus in Physics. Singapore: WSPC. 2000.
Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier, 2006. —524 pages.
Zhang Y. A finite difference method for fractional partial differential equations. Appl. Math. Comput., 215 (2009), pp. 524-529
Scherera R., Kallab Sh.L., Tangc Y., Huang J. The Grünwald–Letnikov method for fractional differential equations. Computers and Mathematics with Applications 62 (2011) 902–917.
Burden R.L., Faires J.D. Numerical Analysis, Ninth Edition. Brooks/Cole 20 Channel Center Street Boston, MA 02210, USA, 2011.